
Query Optimization Revisited: An AI Planning Perspective
Nathan Robinson

Dept. of Computer Science
University of Toronto

Toronto, Canada

Sheila A. McIlraith
Dept. of Computer Science

University of Toronto
Toronto, Canada

David Toman
School of Computer Science

University of Waterloo
Waterloo, Canada

Abstract

The generation of high quality query plans is at the heart of
query processing in traditional database management systems
as well as in heterogeneous distributed data sources on corpo-
rate intranets and in the cloud. A diversity of techniques are
employed for query plan generation and optimization, many
of them proprietary. In this paper we revisit the problem of
generating a query plan using AI automated planning. Char-
acterizing query planning as AI planning enables us to lever-
age state-of-the-art planning techniques, as well as supporting
the longer-term endeavor of purposeful information gathering
as part of a larger data-intensive, task-driven system. While
our longterm view is broad, here our efforts focus on the spe-
cific problem of cost-based join-order optimization, a central
component of production-quality query optimizers. We char-
acterize the general query planning problem as a delete-free
planning problem, and query plan optimization as a context-
sensitive cost-optimal planning problem. We propose algo-
rithms that generate high quality query plans, guaranteeing
optimality under certain conditions. Our approach is general,
supporting the use of a broad suite of domain-independent
and domain-specific optimization criteria. Experimental re-
sults demonstrate the effectiveness of AI planning techniques
for query plan generation and optimization.

1. Introduction
Informally, a query plan or a query execution plan is an or-
dered set of physical operations used to access information.
Query optimization endeavors to find a query plan that max-
imizes the efficiency of execution, where efficiency may be
measured in terms of minimizing space, latency, or other
properties associated with the execution of the plan (e.g.,
(Ioannidis 1996; Chaudhuri 1998; Haas et al. 2009)). Tra-
ditionally the information being accessed by a query plan
has resided in a relational database management systems, but
as information management has evolved, query optimization
has broadened to address plans that are executed over net-
work accessible federated databases. Most recently, with
the preponderance of structured and unstructured data in dis-
tributed information sources, there has been increasing inter-
est in querying information sources that exist over the web
and in the cloud, and extending beyond relational databases
to linked data (e.g., (Ladwig and Tran 2010)).

In this paper we examine whether AI automated planning
has anything of substance to contribute to the generation and
optimization of plans for information gathering in general,
and specifically for relational queries. Indeed there is a body
of previous AI planning research related to query planning,
including (e.g., (Kambhampati and Gnanaprakasam 1999;
Nie and Kambhampati 2001; Kambhampati et al. 2004),
(Knoblock 1996; Ambite and Knoblock 1997; 2000; Barish

and Knoblock 2008), (Friedman and Weld 1997)). Many of
these works use planning or plan rewriting to construct query
plans using simple physical operations, some relying on ex-
tensive processing outside the planner. Much of this (excel-
lent) work is older work, little of it benefiting from advances
in the state of the art in planning and plan optimization in
the last decade. We were originally interested in revisiting
this problem with the broadened perspective of advances in
delete-free, cost-optimizing, and preference-based planning,
and with a view to the integration of optimized information
gathering into decision-making.

We are motivated by the task of the generating optimized
information gathering plans in all of their guises, but for the
purposes of this paper, our algorithms and empirical evalu-
ation are tailored to the task of query optimization in rela-
tional database systems, and specifically to cost-based join-
order optimization – the optimization of the ordering of join
operations employed in conjunctive query evaluation.

The original 1979-published work on query optimization
was with respect to System R, and used dynamic program-
ming techniques (Selinger et al. 1979). Modern-day systems
are proprietary and embedded within commercial systems,
but reportedly some continue to use dynamic programming,
while others use time-limited branch and bound search. Here
we cast the general problem of information gathering as a
delete-free planning problem, and the problem of optimiz-
ing the quality of information gathering as a cost-optimizing
delete-free planning problem.

Unfortunately, the delete-free property of information
gathering is not universally applicable. In particular, when
we delve into the details of the particular relational database
query optimization task of cost-based join-order optimiza-
tion, we immediately observe two things. First, that the cost
models that are employed in join-order optimization are con-
text sensitive. The cost of an action is predicated on what
has preceded it. Further, we observe that while information
gathering is delete free, some of the physical operations em-
ployed to realize efficient query plans can have a component
that deletes a property of our plan state. (The sorting of a ta-
ble as part of some physical operations is one such example.)

We develop three somewhat diverse planning algorithms
to address our query optimization problem: a delete-free al-
gorithm, an optimal A* algorithm, and a greedy algorithm,
together with a suite of domain-specific heuristics. We an-
alyze their properties and assess their computational effec-
tiveness. Of particular note is our ability to generate query
plans that are guaranteed optimal on problems that are highly
competitive to those reputed to be solved to optimality by

commercial systems.
The work presented here is in its early stages, but is suffi-

ciently advanced that there are interesting results and lessons
to share. It introduces an interesting application to the AI
Planning community, and a challenging problem to those in-
terested in applications for cost-optimal (delete-free) plan-
ning and the more specific unaddressed problem of context-
sensitive cost-optmal (delete-free) planning.

2. Preliminaries
We begin with a review of necessary relational database
background and terminology. Conjunction queries (CQ) in
SQL take the following form
select x1, . . . , xk from R1 r1, . . . , Rn rn where C

where C is a conjunction of equalities of the form ri.a = xl
for a an attribute (column) of the relation (table)Ri. This can
be equivalently written as a predicate calculus-style compre-
hension of the form:

{x1 . . . , xk | ∃r1, . . . , rk, xk+1, . . . , xm.

R1(r1) ∧ . . . ∧Rn(rn) ∧
∧

Riaj(ri, xl)}
where, conceptually, Ri(ri) atoms bind the variables ri to
record id’s of records in the instance of Ri and Riaj are
binary relations that represent attributes of Ri (attribute re-
lations). Note that the tuple variables (ri) are separate from
the value variables (xj). We allow some of the variables xi
in the select list to be designated as parameters.

A typical query compiler and optimizer in modern rela-
tional database systems performs several steps to produce a
query plan, that is instructions to the query execution phase
that is ultimately responsible for retrieving the data and an-
swering the user’s query. The query optimizer’s phases range
from parsing, type-checking, view expansion, etc., to rule-
based query rewriting and cost-based query optimization. In
the following we focus on cost-based optimization for con-
junctive queries, that roughly correspond to the most com-
mon queries in SQL, the so called SELECT-blocks. Indeed,
this part of optimizing queries is commonly considered the
corner stone of relational query optimization since the origi-
nal System R (Selinger et al. 1979).

2.1 Operators for CQ Query Plans
The query plans for conjunctive queries are responsible for
accessing the data relevant to the query answers that are
stored in (possibly disk-based) data structures, called the ac-
cess paths. The results of these primitive operations are then
combined using join operators to form the ultimate query
plan. Indeed, the crux of query optimization for conjunctive
queries lies in the appropriate choice of appropriate access
paths for the relations involved in the query and in the or-
dering of how the results of these operations are combined
using joins – hence this part of query optimization is often
dubbed join-order selection.

Additional relational operators, such as selections and
projections are commonly not considered at this time—
either they are fully subsumed by joins (such as in the case
of constant selections) or can be added in post-processing
(projections1).

1While we do not explicitly deal with duplicates in this presen-

Access Paths The primitive relational operations are the
access paths (APs), operators responsible for retrieving the
raw data from relational storage (typically, disks). Every
user relation (table) is typically associated with several ac-
cess paths that support efficient search for tuples based on
various conditions – e.g., find all Employee tuples in which
the name attribute is “John”. Note that the access paths used
for search expect some of their attributes (the inputs) to be
bound (i.e., associated with a constant value obtained earlier
in the course of execution of the query plan). Formally, we
can describe the access paths for a relationR as triples of the
form

name(r, x1, . . . , xk) : 〈R(r) ∧ C, {xi1 , . . . , xik}〉
where C is a conjunction of equalities (similar to those in
conjunctive queries) only using attributes of R and variables
r and x1, . . . , xk out of which xi1 , . . . , xik denote the input
parameters of this access method.

Base File (scan and record fetch): In the basic setting, for
each relation R we always have the following two access
paths:

RScan(r, x1, . . . , xk) :
〈R(r) ∧Ra1(r, x1) ∧ . . . ∧Rak(r, xk), {}〉

RFetch(r, x1, . . . , xk) :
〈R(r) ∧Ra1(r, x1) ∧ . . . ∧Rak(r, xk), {r}〉

where a1, . . . , ak are all the attributes of R; these two paths
are used to retrieve all tuples of a relation R and to retrieve
a particular tuple given its tuple id (note that the tuple id r
is the input to the access path and has to be bound before a
record can be fetched).
Indices: In addition to the basic access paths we typically
have additional access paths, called indices, that are used to
speed up lookups for tuples based on certain search condi-
tions (that are again captured by specifying inputs for the
access path). Note also that the indices typically store only
a few attributes of the indexed relation (the remaining ones
can be retrieved using the Fetch access path). We capture
this by declaring an access path

RxxxIndex(r, Y) : 〈R(r) ∧ C,X〉
for each index on R (called generically xxx here) where C
is a conjunction of attribute relations (for attributes of R), is
X a set of names of variables that correspond to parameters
of the index, and Y is a set of variables that correspond to
the attributes actually stored in the index (typically X = Y).
Example 1 Given a relation Emp(Id, Name, Boss)
we will have the following access paths:
EmpScan(r, x1, x2, x3) : 〈Emp(r) ∧
EmpId(r, x1) ∧ EmpName(r, x2) ∧ EmpBoss(r, x3), {}〉

EmpFetch(r, x1, x2, x3) : 〈Emp(r) ∧
EmpId(r, x1) ∧ EmpName(r, x2) ∧ EmpBoss(r, x3), {r}〉

EmpIdIndex(r, x1) : 〈Emp(r) ∧
EmpId(r, x1){x1}〉

EmpNameIndex(r, x1, x2) : 〈Emp(r) ∧
EmpName(r, x1) ∧ EmpId(r, x2), {x2}〉

that allow retrieving all employee records, finding a record
by record id, finding record ids using employee id, and find-
ing record ids using employee name, respectively. Note that
EmpNameIndex has an extra variable x2 for Id; we will
see later how this can be used for so-called index only query
plans.

tation, all the techniques are fully compatible with SQL’s duplicate
semantics for conjunctive queries.

Join Operators To combine the results of access path in-
vocations into query results, the join operators (that essen-
tially implement conjunctions) are used. We consider the
following two implementations of these operators:

Nested Loops Join (NLJ): The most basic join operator is
based on the idea that for each tuple retrieved from its
left argument it probes its right argument to find matching
tuples. When the right argument is an access path with
an input parameter present in the above tuple, the value is
passed to the access path to facilitate search (in this case
the join is often called the IndexJoin).

Merge Sort Join (MSJ): Another approach to implement-
ing the join operator is to sort each of its arguments on the
join attribute and then merge the results. While algorith-
mically preferable, the overhead of sorting often makes
this method inferior to the plain NLJ. On the other hand,
knowledge of order properties of the underlying access
paths may allow the sorting step to be avoided.

Many other join implementations and algorithms have been
investigated, such as the Hash join (based on creating a tem-
porary hash-based index); for the purposes of this paper we
focus on the above two joins without loss of generality.

To simplify the presentation we only consider left-deep
query plans in this paper (this is similar to System R and is
fully general for iterator-based plans that do not materialize
intermediate results).
Example 2 For a query:

select x1, x2 from Emp e
where e.Id = x1 and e.Name = x2

written as a comprehension as
{x1, x2 | Emp(r) ∧ EmpId(r, x1) ∧ EmpName(r, x2)}

we expect the following query plans, based on whether x1 or
x2 (or neither) is a query parameter:
• None: EmpScan(r, x1, x2, x3)

• x1: EmpIdIndex(r, x1) onNLJ EmpFetch(r, x1, x2, x3)

• x2: EmpNameIndex(r, x1, x2)

Note that the last plan is an index-only plan. Also note
that replacing EmpFetch access path that retrieves employee
records based on record id by three paths one for each
employee attribute would simulate how column stores ex-
ecute queries. This relies on our representation of queries
and access paths using tuple ids and attribute relations; in-
deed, this representation supports many advanced features
that go far beyond textbook approaches and often general-
izes hard-coded solutions present in production relational
systems (such as unclustered indexing, index-intersection
search, etc.).

2.2 Cost Model
The optimality of a query plan is judged with respect to a
cost model based on summary (statistical) information about
the relations and the access paths (that store the actual data);
we follow a simple System-R style cost model to illustrate
the approach (however, more advanced cost models can be
easily used as well). We collect the following:

• for every relation R (table): the number of tuples and, for
each attribute, the number of distinct values;

• for each access path (index): the cost (no. of disk pages
read) of retrieving all the tuples that match the access
path’s input parameters (reading the whole data set if
none);

These estimates are then combined, using arithmetic formu-
las associated with particular join algorithms, to estimate the
cost and cardinality of query plans (in disk page reads).

3. Mapping into PDDL Actions
We map join-order selection to an automated planning prob-
lem by combining the choice of the next access path with the
appropriate implementation of the join operation in a sin-
gle PDDL action (note that this is sufficient for our left-deep
plans). We use the fluents needs-R, has-R, and bound
to capture the fact that the query needs to access a certain
relation, that the current query plan has already accessed a
certain relation, and that a variable has been bound to a value
in the current plan, respectively.

3.1 Nested Loop Joins
First considering plans that use NLJ only (note that this also
covers index-join based plans in the cases where NLJ is cou-
pled with an index access path). For each AP
〈RAP, R(r) ∧Ra1(r, x1) ∧ . . . ∧Rak(r, xk), {xi1 , . . . , xil}〉

there is an action:

Action NLJ-RAP
pre: needs-R(?r),

bound(?xi1), . . . , bound(?xil)
post: has-R(?r) has-Ra1(?r, ?x1) . . . has-Rak(?r, ?xk)

bound(?x1) . . . bound(?xk)

Next, for the query:
{x1 . . . , xk | ∃r1, . . . , rk, xk+1, . . . , xm.

R1(r1) ∧ . . . ∧Rn(rn) ∧
∧

Rai(ri, xl)}
we have an initial state s0 such that:
needs-R1(r1), . . . ,needs-Rn(rn) ∈ s0
needs-Rai(ri, xl) ∈ s0 for all conjuncts in

∧
Rai(ri, xl), and

bound(xj) ∈ s0 for all parameters in the query.
and a goal G such that:

has-R1(r1), . . . , has-Rn(rn) ∈ G and
has-Rai(ri, xl) ∈ G for all conjuncts in

∧
Rai(ri, xl).

Example 3 For the query
{x1, x2 | Emp(r) ∧ EmpId(r, x1) ∧ EmpName(r, x2)}

with parameter x1 we have a possible plan:
〈NLJ-EmpIdIndex(r, x1),NLJ-EmpFetch(r, x1, x2, x3)〉

Note that the initial NLJ “joins” with a single tuple of pa-
rameters, in this example with the value for x1. In the plan-
ner this corresponds to exploring the following sequence of
states:
1. needs-Emp(r), needs-EmpId(r, x1), needs-EmpName(r, x2), bound(x1)

2. needs-Emp(r), needs-EmpId(r, x1) needs-EmpName(r, x2),

bound(x1), has-Emp(r), has-EmpId(r, x1), bound(r)

3. needs-Emp(r), needs-EmpId(r, x1), needs-EmpName(r, x2),

bound(x1), has-Emp(r), has-EmpId(r, x1), bound(r)
has-EmpName(r, x2), has-EmpBoss(r, x3), bound(x2), bound(x3)

Another plan is 〈EmpScan(r, x1, x2, x3)〉 . This produces the
following sequence of states:
1. needs-Emp(r), needs-EmpId(r, x1), needs-EmpName(r, x2), bound(x1)

2. needs-Emp(r), needs-EmpId(r, x1), needs-EmpName(r, x2),

bound(x1), has-Emp(r), has-EmpId(r, x1), has-EmpName(r, x2),

has-EmpBoss(r, x3), bound(x2), bound(x3)

This plan is however, less efficient given our cost model.

3.2 Adding Merge Sort Joins
While we could naively add MSJ to the above approach,
we would miss opportunities arising from additional under-
standing of ordered properties of the access paths in order to
avoid sorting steps in the plan.

We use the fluent asc(x) to indicate that the values of the
variable x are sorted (ascending) in the output of the (cur-
rent) query plan (again we use only single-variable order-
ings, but extending to other interesting orders is a mechan-
ical exercise). Note, however, that unlike, e.g., the bound
fluent, the sorted properties of variables may disappear af-
ter executing the next join, causing the encoding to lose its
delete-free character.

To take advantage of order of access paths and results of
partial query plans we use the following three actions that
correspond to sorting the result of the current query plan,
to merge-joining with an appropriately ordered access path,
and to merge-joining with an access path that was sorted
prior to the join, respectively:
Action Sort-on-?x: (sort results of the current plan on x)

pre: bound(?x)
post: asc(?x) ¬asc(?y) for all other variables ?y

Action MJ-on-?x-AP : (add a merge-join on variable x
with the access path AP, assuming AP is also sorted on x)

pre: bound(?x) asc(?x)
post: effects of AP as for NLJ

¬asc(?y) for all other variables ?y

Action MSJ-on-?x-AP : (add a sort-merge-join on vari-
able x with the access path AP, assuming AP is not sorted on
x)

pre: bound(?x) asc(?x)
post: effects of AP as for NLJ

¬asc(?y) for all other variables ?y

We also add asc(x) to the initial state for each bound vari-
able x. (This is sound since there is only a single “tuple” of
parameters and constants.)

Finally, for a given query problem, we take an initial de-
scription of the problem instance, together with the schemas
described here, and generate an query-specific PDDL plan-
ning instance. In addition to the information in the schemas,
each individual action has an action cost that is a com-
putation that relies on the variable bindings in the current
state and as such is context specific. While PDDL supports
context-specific action costs, few planners actually accom-
modate them, we therefore solve the previously described
problems with the domain specific solvers presented in Sec-
tion 5.

In more detail, the cost of our actions (that represent join-
ing the next access path to the current query plan) depends
on the number of tuples so far, captured as size(s) for the
current state s, the size and structure of the relation to be
joined, and the particular join algorithm. These values are
used to estimate the cost and size in successor states. For
example, the cost of executing NLJ-RScan in state s is
pages(R)ceil(size(s)/buf-sz), that is we must join every
page of tuples in the current store with every page of tuples
in R (where buf-sz is the number of tuples we buffer be-
fore scanning R). For brevity, we omit a full description of
the cost functions we employ, noting instead that they are
closely based on those used in System R.

4. Query Planning as AI Planning
In the previous section, we saw how to encode the join-order
query optimization problem in terms of a PDDL initial state,
goal, and a set of PDDL action schemas that are translated,
together with their cost model, into a set of instance-specific
ground actions. We refer to the problem of generating a
query plan with the NLJ PDDL encoding as a J-O query
planning problem and when augmented with MSJ APs as
a J-O+ query planning problem. By inspection, we make the
following observations:
Obs 1 J-O query planning is a delete-free planning problem.
Obs 2 J-O query optimization is a context-sensitive cost-
optimizing delete-free planning problem.
Obs 3 J-O+ query planning is not a delete-free planning
problem and as such, J-O+ query optimization is simply a
context-sensitive cost-optimizing planning problem.

We highlight these seemingly straightforward observa-
tions because they suggest the potential for exploiting ad-
vances in delete-free cost-optimizing delete-free planning
techniques (e.g., (Gefen and Brafman 2012; Haslum, Slaney,
and Thiébaux 2012; Pommerening and Helmert 2012)). Per-
haps less encouraging is the observation that delete-free
planning owes much of its computational advantages to the
property that partial plans expand monotonically and a final
ordering of groupings of actions can be extracted quite eas-
ily. Unfortunately, with a context sensitive cost model, order
matters, and many of the gains afforded by cost-optimizing
delete-free planning are lost at least with respect to current
implementations. Nevertheless on the positive side, as we
move beyond relational cost-based join-order optimization
and consider other criteria for defining plan quality and other
physical operators for realizing a query/information gather-
ing plan, we see that the models of cost are often context
independent and thus, again by inspection, we make the fol-
lowing observation:
Obs 4 A number of query and information-gathering opti-
mization problems are context-independent cost-optimizing
delete-free planning problems.

This bodes well for the application of delete free planners
to the generation of some classes of optimized information-
gathering plans.

5. Generating Query Plans
Following from the observations in Section 4., we propose
three algorithms together with a suite of domain-dependent
heuristics for generating optimized query plans. The first al-
gorithm, DF, exploits the delete-free nature of our problem,
greedily generating cost-minimizing delete-free plans. The
second is a classical A* algorithm, which we ran with three
different admissible heuristics. The third, GR, is a greedy
best-first search that does not consider partial plan cost in its
evaluation function, but that uses an admissible heuristic, to-
gether with cost, in order to do sound pruning. The latter two
algorithms can be guaranteed to produce optimal plans un-
der certain conditions, which is notable relative to the state
of the art in query planning. Note that while the heuristics
have elements that are specific to the domain of join-order
optimization, the general structure of the algorithms can be
used for a diversity of information gathering/query plan opti-
mization tasks simply by changing the cost function and the
heuristic.

5.1 Fast Delete-Free Plan Exploration
Algorithm DF computes plans that do not include sorting
actions. This prevents actions that merge on variables other
than input variables. For certain problems, this precludes DF
from finding optimal solutions, but the costs of the plans it
finds are guaranteed to be upper bounds on the optimal cost
allowing them to be used as initial bounds for the algorithms
A* and GR.

The decision not to allow sorting actions means that in any
state s, a subset of all actions can be efficiently determined
that will move the planner towards the goal. We call such
actions useful and denote the set of useful and applicable ac-
tions in state s as Au(s). The algorithm proceeds by heuris-
tically generating sequences of useful actions which achieve
a goal state. Throughout its fixed runtime, it remembers the
best such plan generated. Details of the algorithm follow.

Algorithm 1 DF
π∗ ← 〈〉; c∗ ← inf
while not time out do

s← s0; c← 0; π ← 〈〉
while G 6⊆ s do

if random fraction of 1 ≤ 0.9 then
a← a′ ∈ Au(s) with minimal resulting size,

breaking ties with action cost
else

a← a′ ∈ Au(s) randomly selected with a
likelihood inversely proportional to the
resulting size and then action cost

c← c+ cost(a); π ← π + a
if c ≥ c∗ then break
s← s ∪ add(a)

if c < c∗ then c∗ ← c; π∗ ← π
return π∗ and c∗

Clearly DF does not guarantee to compute an optimal
query plan, but it has the capacity to generate a multitude
of plans very quickly. In practice, our Python implementa-
tion of DF can generate hundreds to thousands of candidate
plans per second. In Section 6 we examine how effective
this approach is empirically, at finding a high-quality plan.
As noted below, this algorithm is also useful in providing
a quality pruning bound for pruning of partial plans in our
algorithms A* and GR.

5.2 A*
This algorithm A* is an eager A* search that uses a num-
ber of domain-dependent admissible heuristics. The code
for A* is based on the eager search algorithm in Fast Down-
ward (Helmert 2006). The primary difference from exist-
ing heuristic-search planning algorithms is that, as our action
costs are context-dependent, we compute them lazily when
expanding a state. While this increases the cost of expanding
each state, it eliminates the need to pre-compute actions with
all possible costs, which is prohibitively expensive.

We now examine the three heuristics that were used with
this algorithm and show their admissibility and consistency
and therefore the optimality of the solutions returned by A*.
The first heuristic, hblind evaluates a state s as follows:
• h(s) = 0, if G ⊆ s; and

• h(s) = 1, otherwise.

Proposition 1 The heuristic hblind is admissible and con-
sistent for the query-planning problems we consider.

The consistency and admissibility of the heuristic hblind
follow from the fact that 1 is a lowed-bound on the cost of
any action and that the heuristic is clearly monotone.

The next heuristic, hadmiss evaluates a state s by count-
ing the number of unsatisfied relations and assuming that
size(s) and all subsequent states is 1 to get a lower bound
on the cost of achieving the goal.

In a given state s let R(s) be the unsatisfied relations and
RI(s) be the (partially) unsatisfied relations for which, we
have a bound tuple id – i.e. those relations for which a partial
index action has been executed, which can be satisfied with
a fetch action.
hadmiss evaluates a state s as follows:

• h(s) = 0, if G ⊆ s, and

• h(s) = |RI(s)|+∑
r∈R(s)\RI(s)

max(1, ceil(log200(pages(R))))

Proposition 2 The heuristic hadmiss is admissible and con-
sistent for for the query-planning problems we consider.

To prove Proposition 2, we require to show that hadmiss

is guaranteed to not over-estimate the cost of reaching the
goal from s and is monotone. The former point can be
seen by noting that the minimum cost of satisfying any re-
lation R is 1 when we can currently execute a fetch action
on R, that is when R ∈ RI(s) and otherwise the cost is
at-least max(1, ceil(log200R.pages)), from the System R-
based cost model. hadmiss is monotone because whenever
we execute an action a we either reduce the size of the
sets R(s′) and R(s′) by 1 or leave them unchanged and if
|RI(s

′)| < |RI(s)| then |R(s′)| < |R(s)|.
The final heuristic that we used, hadmissLA builds upon

the hadmiss heuristic by performing one step of look ahead to
take into account the size of the current state s. LetAu(s) be
the set of applicable and useful actions in state s, including
sort actions. hadmissLA evaluates a state s as follows:

• h(s) = 0, if G ⊆ s, and

• h(s) = mina∈Au(s)c(a) + hadmiss(s ∪ add(a))

Proposition 3 The heuristic hadmissLA is admissible and
consistent for the query-planning problems we consider.
To see that Proposition 3 holds, see that hadmissLA has a
value for non-goal states that is the minimum over all succes-
sors of the cost to reach that successor s′ and the admissible
and monotone estimate given by hadmiss from s′.
Theorem 1 If A* terminates on a query planning problem
of the type we consider, then it returns an optimal solution.
We observe that our dynamic cost can be seen just as a proxy
for a large number of ground actions with fixed-costs, hence
the Theorem follows as the heuristics are consistent. Note
that all of our heuristics are admissible. We explored the
development of more informative inadmissible heuristics,
which could be used with admissible heuristics for sound
pruning. Unfortunately, as of this writing, we have found no
superior inadmissible heuristic.

5.3 Greedy Best-First Search
This algorithm GR is an eager greedy best-first search that
uses the same heuristics and code-base as A*. The sole dif-
ference between GR and A* is that GRorders the states on its
open list solely on the basis of their heuristic values, that is
by the function f(s) = h(s). Expanded states s are pruned
when g(s) + h(s) exceeds the current bound.
Theorem 2 An expanded state s can be safely pruned when
g(s) + h(s) exceeds the current bound without sacrificing
optimality.
The proof idea is based on observing that the bounds are
sound and heuristics admissible. The next Theorem follows
as either we consider successors of a node or the node is
pruned; lack of further nodes implies that an optimal solution
was found (or none exists).
Theorem 3 If GR terminates on a query planning problem
of the type we consider, then it returns an optimal solution.

6. Evaluation
The question we’d like to address with our experimental
evaluation is how AI planning techniques perform relative to
the state of the art in relational database query planning. In
particular, we’d like to know whether AI planning techniques
have the potential to compute higher quality query plans
faster than the state of the art. Unfortunately, the state of the
art in relational database technology is embedded within pro-
prietary systems, precluding systematic comparison. Simi-
larly there are no suitable benchmarks for objective compar-
ison of underlying algorithms. Instead what we do know and
can leverage is that typical relational database systems em-
ploy time-limited planning algorithms and commonly trade
plan optimality for reducing the time to find a reasonable
query plan. For example, the classical System R query op-
timizer only considers plans that utilize Cartesian products
as a last resort despite the fact that there are well-known ex-
amples where this heuristic leads to suboptimal query plans
(this happens, e.g., when two relations with small cardinality
are joined with a large relation indexed on attributes retrieved
from both of these small relations). Other commercial sys-
tems utilize variants of time-constrained branch-and-bound
algorithm in which the system attempts to allocate approx-
imately the same time quota to exploring the “upper part”
of the tree of possible plans as to the “lower part” (that is
commonly much larger). Also, commercial query optimiz-
ers commonly take advantage of additional schema informa-
tion, such as the key and foreign key constraints, that can be
used to improve the cost estimation (this, however, makes
the optimization problem easier as the additional informa-
tion tends to make the cost difference between varying query
plans more pronounced).

As the time to optimize queries is quite constrained in ex-
isting database systems the size of join-order problems that
relational database optimizers currently solve (to optimal-
ity), in terms of the number of relations in a query, and the
ratio of the number of variables to number of relations is
rather small (again, in the absence of additional schema in-
formation). The actual algorithms and their performance in
most commercial optimizers is a closely guarded business

secret and only anecdotal evidence—that optimality is only
guaranteed for about up to 10 way joins—is available.

With this information in hand, the purpose of our experi-
ments was 1) to evaluate the relative effectiveness of the dif-
ferent approaches to query plan search and plan optimization
that we examined, with the general objective of determin-
ing the relative merits and shortcomings of the algorithms
and heuristics, and 2) to get some sense of whether AI auto-
mated planning techniques held some longer-term promise
for cost-based join order optimization, in particular, rela-
tional database query optimization and more generally, and
beyond that to the general problem of optimizing the quality
of information gathering from disparate sources.

We evaluated 3 different algorithms: DF, our delete-free
planning algorithm, A*, our A* search algorithm, and GR,
our greedy search algorithm. The latter two algorithms
were each evaluated with three different heuristics: hblind,
hadmiss, and hadmissLA. Our specific purpose was twofold.
First, we aimed to determine how many problems each of A*
and GR could solve optimally. Second, and more pragmati-
cally, we aimed to determine the quality of the plans found
by DF and A* as a function of time. Proprietary database
systems usually allocate a short period of time for query
planning (on the order of seconds) and for our algorithms
to be practically useful they must find high-quality plans in
this time frame.

In the absence of existing query planning benchmarks, we
tested our planning systems on randomly generated database
schemata and queries. Each generated schema consists of
tables with between 2 and 10 attributes (not greater than half
of the number of variables in the associated query). Each
table has a random size of between 10k and 500k tuples and
200 tuples are assumed to fit into a page of memory. The
first attribute of every table is assumed to be the primary key
and has a number of distinct values equal to the table size.
Every other attribute has a random number of distinct values
up to 10% of the table size.

Every query has a given number of relations R =
5, 10, ..., 60 and a given number of variables V = 1.2, 1.5, or
2 times R. Every query has 3 variables set as constants and
10 other variables selected (less if there is not enough vari-
ables). For each relation in the query there is a 10% chance
of reusing an existing table, otherwise a new table is used.
Variables are randomly assigned to relations and we ensure
that queries are connected.

Ten problem instances were generated for each R and
V . All experiments were run on a 2.6GHz Six-Core AMD
Opteron(tm) Processor with 2GB of memory per experiment.
We performed the following experiments.

6.1 Experiment 1: Optimal Plans
An upper bound B on plan cost was produced by running
DF for 5 seconds and then A* and GR were run with the
initial bound B with a time limit of 30 minutes. Running
DF for longer than 5 seconds, to get tighter initial bounds,
did not allow more problems to be solved optimally.

The results of this experiment can be seen in Figure 1.
The number of problems that can be solved to optimality
quickly drops off for both planners when the number of re-

5 10 15 20 25 300.0
0.2
0.4
0.6
0.8
1.0 V/R = 1.2

A*(admissLA)
Gr(admissLA)
A*(admiss)
Gr(admiss)
A*(blind)
Gr(blind)

5 10 15 20 25 300.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n
of
 p
ro
bl
em

 so
lve

d
op

tim
al
ly

V/R = 1.5

5 10 15 20 25 30
Number of relations

0.0
0.2
0.4
0.6
0.8
1.0 V/R = 2

Figure 1: Fraction of problems solved optimally by A* and
GR with different heuristics (2GB, 30 min time out).

lations is 15 or higher with A* and heuristic hadmissLA per-
forming the best. Problems with a higher V/R ratio are
somewhat easier than those with a low ratio. As expected,
the different heuristics all give significantly different perfor-
mance. hblind heuristic, due to its lack of guidance leads to
the planners running out of memory on all but the smallest
problems. hadmiss leads to considerably better performance
than hblind, as it returns a value proportional to the num-
ber of relations left to satisfy and directs the planner towards
the goal. However, as it ignores the size of the current and
all intermediate states, it fails to distinguish between many
plans. hadmissLA provides improved performance by at least
considering the size of the state that results from executing
each action, even though it ignores the sizes of all subse-
quent states. An important remaining challenge is to develop
an admissible heuristic that can take into account the sizes of
states beyond one step ahead without doing full k step looka-
head, which was found to be too costly to be an effective
heuristic.

In general, the planners solved those problems for which
they could quickly find a sequence of cheap actions that bind
a large portion of the variables while keeping the size small.
Experiments show that those problems that can be solved op-
timally can be solved quickly, usually within a few seconds.
On many of the remaining problems, the algorithms run out
of memory exploring plateaus close to the goal.

6.2 Experiment 2: Fast High-Quality Plans
Given that our optimal algorithms do not scale acceptably
for real world use, where an acceptable plan must be found
within a few seconds, we also explored the use of several
sub-optimal, any time algorithms.

In these experiments we ran DF and GR with no initial
bounds and also GR with an initial bound generated by run-
ning DF for 5 seconds. Each of these algorithms was run
for a total time of 2 minutes and plans were recorded as they
were produced.

An important question to answer about these algorithms
is how the quality of the plans that they find compares to
the optimal. We only have optimal solutions for the smaller

10-2 10-1 100 101 102
100

101

102
Delete Free (DF)

10-2 10-1 100 101 102
100

101

102

Ra
tio

 o
f s

ol
ut
io
n
qu

al
ity

 to
 o
pt
im

al

Gr(admissLA)

10-2 10-1 100 101 102
Time (s)

100

101

102
DF (5s) + Gr(admissLA)

Figure 2: Ratio of the best plan cost found by a given time to
the known optimal cost for problem instances with R = 10
and V = 20 for DF, GR, and DF run for 5 seconds, followed
by GR with the resulting bound. GR used the hadmissLA
heuristic and all approaches had 2GB, 2 min time out.

problems instances that could be optimally solved by DF and
GR. Figure 2 shows a representative sample of these results
using the hadmissLA heuristic. It shows that for most prob-
lems, the sub-optimal algorithms find solutions that closely
approach the optimal quality within a second. On the smaller
problems, for which we could generate optimal solutions,
DF more quickly approached high-quality solutions.

There was a small subset of problems for which these ap-
proaches are unable to find solutions within 10 times the cost
of the optimal, even after 2 minutes. From the available ev-
idence, this issue increases at larger problem sizes. Further
analysis of the structure of these difficult problems is needed
to determine what prevents the greedy approaches from find-
ing high-quality solutions.

The approach of using DF to produce an initial bound for
GR did not lead to a significantly better solution quality (af-
ter similar or longer run-times) and, due to the time required
to find the initial bound, is impractical. This is not partic-
ularly surprising as GR very quickly finds upper bounds on
plan cost anyway. We therefore omit this approach from fur-
ther discussion here.

As well as comparing DF and GR to the optimal solu-
tions, we performed extensive experiments to compare them
to each other. Figure 3 shows the costs of the best plans
found by DFand GR with all three heuristics after 0.5 and
5 seconds for all problem instances in our experiment set.
Problems that could not be solved by an algorithm were as-
signed a cost of 105 in that case.

From looking at the plots, it is clear that when the runtime
is short, GR generally finds plans that are better than those
found by DF, often by several orders of magnitude. As the
experiment time increases, the quality of best plans found
by DF improve relative to those found by GR. As can be
expected, GR with the hblind heuristic fails almost all prob-
lems, usually running out of memory before any solutions
are found. Over all run times there is a significant group of
problems for which GR fails to compete with DF.

100 101 102 103 104 105
100

101

102

103

104

105
Time = 0.5 sec

Gr(blind)
Gr(admiss)
Gr(admissLA)

100 101 102 103 104 105
Best solution found by Gr

100

101

102

103

104

105

 B

es
t s

olu
tio

n
fo
un

d
by

 D
F

Time = 5 sec

Figure 3: The costs of the best plans found by GR and DF af-
ter 0.5 and 5 seconds for all problem instances in our experi-
ment set. Problems that could not be solved by an algorithm
were assigned a cost of 105 in that case.

This pattern of performance is not particularly surprising.
GR initially performs better than DF because the hadmissLA

heuristic is considerably more informative than the action
selection heuristic employed by DF when generating delete-
free plans. This allows GR to very quickly find reasonably
good plans. However, the greedy nature of GR means that
expansions made early in the search can commit the algo-
rithm to low quality parts of the search space. This behaviour
can explain the cluster of problems on which GR consistently
performs worse than DF.

7. Summary
This paper reports on preliminary findings relating to the ap-
plicability of AI automated planning techniques to the opti-
mization of information gathering in general and to the gen-
eration of high quality cost-based join-order optimized query
plans in particular. We observed that join-order query plan-
ning is a delete-free planning problem, and that query opti-
mization is a context-sensitive cost-optimal delete-free plan-
ning problem. However, when we considered the broader
problem that includes merge-joins, the delete free nature
is lost. We developed delete-free, A*, and greedy plan-
ning algorithms which we combined with domain-dependent
heuristics for generating optimized query plans. The latter
two algorithms were guaranteed to produce optimal plans
under certain conditions. Note that while the heuristics have
elements that are specific to join-order optimization, the gen-
eral structure of the algorithms can be used for a diversity of
information gathering/query plan optimization tasks simply
by changing the cost function and the heuristic. Experimen-
tal results are promising. Perhaps most notably, our planners
could generate optimal query plans of a size that is highly

competitive with those reputed to be solved by commercial
systems. This work presents an interesting and challeng-
ing application domain for AI planning technology and a
promising approach to solving a diversity of problems re-
lated to optimized information gathering.
Acknowledgements: The authors gratefully acknowledge
funding from the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and from the NSERC
Business Intelligence Network program.

References
Ambite, J. L., and Knoblock, C. A. 1997. Planning by rewrit-
ing: Efficiently generating high-quality plans. In Proceedings of
the 14th National Conference on Artificial Intelligence, 706–713.
Ambite, J. L., and Knoblock, C. A. 2000. Flexible and scalable
cost-based query planning in mediators: A transformational ap-
proach. Artificial Intelligence Journal 118(1-2):115–161.
Barish, G., and Knoblock, C. A. 2008. Speculative plan execution
for information gathering. Artificial Intelligence Journal 172(4-
5):413–453.
Chaudhuri, S. 1998. An overview of query optimization in rela-
tional systems. In Proceedings of the 17th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, 34–43.
Friedman, M., and Weld, D. S. 1997. Efficiently executing
information-gathering plans. In Proceedings of the 15th Interna-
tional Joint Conference on Artificial Intelligence, 785–791.
Gefen, A., and Brafman, R. I. 2012. Pruning methods for opti-
mal delete-free planning. In Proceedings of the 22nd International
Conference on Automated Planning and Scheduling, 56–64.
Haas, P. J.; Ilyas, I. F.; Lohman, G. M.; and Markl, V. 2009. Discov-
ering and exploiting statistical properties for query optimization in
relational databases: A survey. Statistical Analysis and Data Min-
ing 1(4):223–250.
Haslum, P.; Slaney, J. K.; and Thiébaux, S. 2012. Minimal land-
marks for optimal delete-free planning. In Proceedings of the 22nd
International Conference on Automated Planning and Scheduling,
353–357.
Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26:191–246.
Ioannidis, Y. E. 1996. Query optimization. ACM Computing Sur-
veys 28(1):121–123.
Kambhampati, S., and Gnanaprakasam, S. 1999. Optimizing
source-call ordering in information gathering plans. In Proceedings
of the 16th International Joint Conference on Artificial Workshop
on Intelligent Information Integration.
Kambhampati, S.; Lambrecht, E.; Nambiar, U.; Nie, Z.; and
Gnanaprakasam, S. 2004. Optimizing recursive information gather-
ing plans in EMERAC. Journal of Intelligent Information Systems
22(2):119–153.
Knoblock, C. A. 1996. Building a planner for information gath-
ering: A report from the trenches. In Proceedings of the 3rd In-
ternational Conference on Artificial Intelligence Planning Systems,
134–141.
Ladwig, G., and Tran, T. 2010. Linked data query processing
strategies. In Proceedings of The 9th International Semantic Web
Conference, 453–469.
Nie, Z., and Kambhampati, S. 2001. Joint optimization of cost and
coverage of query plans in data integration. In Tenth International
Conference on Information and Knowledge Management, 223–230.
Pommerening, F., and Helmert, M. 2012. Optimal planning
for delete-free tasks with incremental lm-cut. In Proceedings of
the 22nd International Conference on Automated Planning and
Scheduling, 363–367.
Selinger, P. G.; Astrahan, M. M.; Chamberlin, D. D.; Lorie, R. A.;
and Price, T. G. 1979. Access path selection in a relational database
management system. In Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data, 23–34.

